TY - JOUR
A2 - Rozikov, U. A.
AU - Ghiasvand, Peyman
AU - Farzalipour, Farkhonde
PY - 2011
DA - 2011/12/28
TI - Notes on the Union of Weakly Primary Submodules
SP - 939687
VL - 2011
AB - Let R be a commutative ring with identity, and let M be an R-module. A proper submodule N of M is said to be weakly primary if 0≠rm∈N for r∈R and m∈M, which implies that either m∈N or rnM⊆N for some positive integer n. In this paper, we study weakly primary submodules, and we investigate the union of weakly primary submodules of R-modules.
SN - null
UR - https://doi.org/10.5402/2011/939687
DO - 10.5402/2011/939687
JF - ISRN Discrete Mathematics
PB - International Scholarly Research Network
KW -
ER -